#read data
<- read.csv('IL_crops_2021.csv') data
Maps
Data Source
https://quickstats.nass.usda.gov/results/466778BB-552D-3C7C-B9B4-2BDE71F5AF1E
Summary
This graphic shows the primary crop in each Illinois county by acres harvested. I chose a color pallet with distinct colors to make it easy to distinguish the different crop designations for each county. Since a few counties did not have data, I chose to use a black outline on the map; this made it easy to see the county lines while also preventing the states without data (which are white) from blending into a white border. Making the map interactive allowed additional data (acres harvested, county names) to be shown in the tooltip instead of over-crowding the visualization.
Warning: package 'dplyr' was built under R version 4.1.3
Warning: package 'data.table' was built under R version 4.1.3
# A tibble: 6 x 4
# Groups: County [6]
County Commodity Data.Item Value
<chr> <chr> <chr> <chr>
1 ADAMS HAY HAY, (EXCL ALFALFA) - ACRES HARVESTED 8,830
2 ALEXANDER SOYBEANS SOYBEANS - ACRES HARVESTED 37,700
3 BOND SOYBEANS SOYBEANS - ACRES HARVESTED 81,100
4 BOONE CORN CORN, GRAIN - ACRES HARVESTED 74,100
5 BROWN WHEAT WHEAT, WINTER - ACRES HARVESTED 620
6 BUREAU CORN CORN, GRAIN - ACRES HARVESTED 248,000
|
| | 0%
|
| | 1%
|
|= | 1%
|
|= | 2%
|
|== | 2%
|
|== | 3%
|
|=== | 4%
|
|=== | 5%
|
|==== | 5%
|
|==== | 6%
|
|===== | 7%
|
|===== | 8%
|
|====== | 8%
|
|====== | 9%
|
|======= | 9%
|
|======= | 10%
|
|======= | 11%
|
|======== | 11%
|
|======== | 12%
|
|========= | 12%
|
|========= | 13%
|
|========= | 14%
|
|========== | 14%
|
|========== | 15%
|
|=========== | 15%
|
|=========== | 16%
|
|============ | 16%
|
|============ | 17%
|
|============ | 18%
|
|============= | 18%
|
|============= | 19%
|
|============== | 19%
|
|============== | 20%
|
|============== | 21%
|
|=============== | 21%
|
|=============== | 22%
|
|================ | 22%
|
|================ | 23%
|
|================= | 24%
|
|================= | 25%
|
|================== | 25%
|
|================== | 26%
|
|=================== | 27%
|
|=================== | 28%
|
|==================== | 28%
|
|==================== | 29%
|
|===================== | 29%
|
|===================== | 30%
|
|===================== | 31%
|
|====================== | 31%
|
|====================== | 32%
|
|======================= | 32%
|
|======================= | 33%
|
|======================= | 34%
|
|======================== | 34%
|
|======================== | 35%
|
|========================= | 35%
|
|========================= | 36%
|
|========================== | 36%
|
|========================== | 37%
|
|========================== | 38%
|
|=========================== | 38%
|
|=========================== | 39%
|
|============================ | 39%
|
|============================ | 40%
|
|============================ | 41%
|
|============================= | 41%
|
|============================= | 42%
|
|============================== | 42%
|
|============================== | 43%
|
|=============================== | 44%
|
|=============================== | 45%
|
|================================ | 45%
|
|================================ | 46%
|
|================================= | 46%
|
|================================= | 47%
|
|================================= | 48%
|
|================================== | 48%
|
|================================== | 49%
|
|=================================== | 49%
|
|=================================== | 50%
|
|=================================== | 51%
|
|==================================== | 51%
|
|==================================== | 52%
|
|===================================== | 52%
|
|===================================== | 53%
|
|===================================== | 54%
|
|====================================== | 54%
|
|====================================== | 55%
|
|======================================= | 55%
|
|======================================= | 56%
|
|======================================== | 57%
|
|======================================== | 58%
|
|========================================= | 58%
|
|========================================= | 59%
|
|========================================== | 59%
|
|========================================== | 60%
|
|========================================== | 61%
|
|=========================================== | 61%
|
|=========================================== | 62%
|
|============================================ | 62%
|
|============================================ | 63%
|
|============================================= | 64%
|
|============================================= | 65%
|
|============================================== | 65%
|
|============================================== | 66%
|
|=============================================== | 67%
|
|=============================================== | 68%
|
|================================================ | 68%
|
|================================================ | 69%
|
|================================================= | 69%
|
|================================================= | 70%
|
|================================================= | 71%
|
|================================================== | 71%
|
|================================================== | 72%
|
|=================================================== | 72%
|
|=================================================== | 73%
|
|=================================================== | 74%
|
|==================================================== | 74%
|
|==================================================== | 75%
|
|===================================================== | 75%
|
|===================================================== | 76%
|
|====================================================== | 77%
|
|====================================================== | 78%
|
|======================================================= | 78%
|
|======================================================= | 79%
|
|======================================================== | 79%
|
|======================================================== | 80%
|
|======================================================== | 81%
|
|========================================================= | 81%
|
|========================================================= | 82%
|
|========================================================== | 82%
|
|========================================================== | 83%
|
|========================================================== | 84%
|
|=========================================================== | 84%
|
|=========================================================== | 85%
|
|============================================================ | 85%
|
|============================================================ | 86%
|
|============================================================= | 86%
|
|============================================================= | 87%
|
|============================================================= | 88%
|
|============================================================== | 88%
|
|============================================================== | 89%
|
|=============================================================== | 90%
|
|=============================================================== | 91%
|
|================================================================ | 91%
|
|================================================================ | 92%
|
|================================================================= | 92%
|
|================================================================= | 93%
|
|================================================================== | 94%
|
|================================================================== | 95%
|
|=================================================================== | 95%
|
|=================================================================== | 96%
|
|==================================================================== | 97%
|
|==================================================================== | 98%
|
|===================================================================== | 98%
|
|===================================================================== | 99%
|
|======================================================================| 99%
|
|======================================================================| 100%
Simple feature collection with 6 features and 15 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: -90.58353 ymin: 37.06818 xmax: -87.93717 ymax: 42.49505
Geodetic CRS: NAD83
STATEFP COUNTYFP COUNTYNS AFFGEOID GEOID County NAMELSAD STUSPS
1 17 153 01784966 0500000US17153 17153 PULASKI Pulaski County IL
2 17 007 00424205 0500000US17007 17007 BOONE Boone County IL
3 17 125 00424261 0500000US17125 17125 MASON Mason County IL
4 17 175 00424288 0500000US17175 17175 STARK Stark County IL
5 17 017 00424210 0500000US17017 17017 CASS Cass County IL
6 17 047 00424225 0500000US17047 17047 EDWARDS Edwards County IL
STATE_NAME LSAD ALAND AWATER Crop Data.Item
1 Illinois 06 516100615 9768333 WHEAT WHEAT, WINTER - ACRES HARVESTED
2 Illinois 06 727114618 3360626 CORN CORN, GRAIN - ACRES HARVESTED
3 Illinois 06 1396914848 62748513 SOYBEANS SOYBEANS - ACRES HARVESTED
4 Illinois 06 746156213 684784 CORN CORN, GRAIN - ACRES HARVESTED
5 Illinois 06 973198204 20569928 CORN CORN, GRAIN - ACRES HARVESTED
6 Illinois 06 576012470 781202 SOYBEANS SOYBEANS - ACRES HARVESTED
Acres geometry
1 5,280 MULTIPOLYGON (((-89.27363 3...
2 74,100 MULTIPOLYGON (((-88.94099 4...
3 93,700 MULTIPOLYGON (((-90.35452 4...
4 85,000 MULTIPOLYGON (((-89.98538 4...
5 79,000 MULTIPOLYGON (((-90.58353 3...
6 50,000 MULTIPOLYGON (((-88.15049 3...
library(ggplot2)
library(ggdendro)
library(paletteer)
library(plotly)
# define highlight key
<- highlight_key(IL_harvest, ~County)
hl
# create map
<- ggplot(data = hl) +
p_harvest geom_sf(color="black", aes(geometry = geometry, fill=Crop, label=County, label2=Acres))
<- p_harvest + ggdendro::theme_dendro()
p_harvest <- p_harvest + guides(fill=guide_legend(title="Top Crop by Acres Harvested"))
p_harvest <- p_harvest + coord_sf() + scale_fill_paletteer_d("rtist::picasso")
p_harvest <- p_harvest + ggtitle("Top Crops in Illinois Counties")
p_harvest
p_harvest
#make it interactive!
<- ggplotly(p_harvest, tooltip = c("County", "Crop", "Acres")) %>% highlight(
plt on = "plotly_hover",
off = "plotly_relayout"
)
plt